On the Dynamics of Nanodust in the Near-Lunar Space Environment

Tim Stubbs, David Glenar, Amanda Cook, Diane Wooden, and Tony Colaprete

Parallel Session #4: Interaction between Space and Planetary Surfaces I NASA Exploration Science Forum NASA Ames Research Center, CA July 22, 2015

Motivations and Objectives

A transient nanodust population was inferred from LADEE/UVS observations when viewing anti-sunward from above the nightside of the Moon – a serendipitous discovery!

Best example occurred several hours after the peak of the narrow but intense Quadrantid meteoroid stream.

What is the source of this nanodust?

How did it get there?

What is the source of this nanodust?

Could it be part of the impactgenerated ejecta cloud?

How did it get there?

What forces determine the trajectories of nanodust particles in the near-lunar space environment?

Lorentz Force on Nanodust

$$\mathbf{a}_L = \frac{q_d}{m_d} (\mathbf{E}_{sw} + \mathbf{v_d} \times \mathbf{B}_{IMF})$$

$$\mathbf{a}_L = \frac{3\epsilon_0 \phi_d}{\rho \, r_d^2} [(\mathbf{v_d} - \mathbf{v_{sw}}) \times \mathbf{B_{IMF}}]$$

No charge = No Lorentz force

How would these forces effect nanodust dynamics?

Ejection Velocity Distribution of Nanodust

Include effects of: $E_{sw} = 1 \text{ mV m}^{-1}$ on grain with $r_d = 20 \text{ nm}$ and $\phi_d = 1.8 \text{ V}$ acting AGAINST gravity.

Similar to the situation on the duskside post-QUA.

Reduces the effective escape velocity to $\approx 1.9 \text{ km s}^{-1}$.

Factor of ≈ 2 increase in escaping ejecta.

Would act to increase nanodust line-of-sight column abundances.

Ejection Velocity Distribution of Nanodust

Opposite case:

Lorentz force acting WITH gravity.

Similar to the situation on the duskside post-QUA.

No nanodust can escape – it's all effectively trapped.

Times-of-flight reduced to <~day.

Could play a role in the post-QUA midnight-to-dusk decrease in UVS nanodust column abundances.

Solar Wind
Convection E-field

Solar Wind

Solar Wind

Larger ejecta

particles controlled

Summary and Conclusions

UVS observations of nanodust are difficult to explain!

Flow

Estimates from *Krivov et al.* (2003) impact ejecta model, applied using parameters from LDEX regime, fall short by orders-of-magnitude.

Any nanodust in near-lunar space would be slow to charge – initial trajectories would depend on charge acquired during ejection process.

Radiation pressure has a minor effect.

Quadrantid

Radiant

Lorentz force (E-field component) can dominate the motion of nanodust ejected close the escape velocity.

Lorentz force could perhaps act to an increase in line-ofsight abundances and form asymmetries in the distribution of nanodust surrounding the Moon.